Analysis of air pollutant distribution at the incinerator hazardous waste treatment facility in Nambo Village, Regency of Bogor

Authors

  • Dody Choeruddin Graduate School of Environmental Management, Pakuan University, indonesia
  • Sutanto Graduate School of Environmental Management, Pakuan University, indonesia
  • Rosadi Graduate School of Environmental Management, Pakuan University, indonesia

DOI:

https://doi.org/10.33751/injast.v6i2.49

Keywords:

Air pollution distribution, AMDAL, dispersion model, hazardous waste

Abstract

The population of Indonesia continues to grow every year, resulting in an increasing number of industries to meet the needs of daily life. The growth in the number of industries reflects the progress of national economic development. However, industrial activities, in addition to generating positive impacts on economic growth, also produce negative impacts on the environment. The generation of Hazardous and Toxic Waste (B3 waste) is one of the negative consequences of industrial activities which, if not properly managed, can pose serious risks to the environment, human health, and the sustainability of the industrial activities themselves. One of the available options for managing B3 waste is treatment using incinerator technology. This study was conducted with the objective of determining and analyzing the concentrations of air pollutants in both emissions and ambient air, as well as the spatial distribution of air pollutants, specifically SO₂, NO₂, and Total Suspended Particulate (TSP), released from the incinerator chimney that have the potential to pollute the environment surrounding the company’s operational area, by comparing the results with baseline data used during the preparation of the Environmental Impact Assessment (AMDAL). This study employed a quantitative analytical approach using the concepts of classification, calculation, measurement, and causal relationship analysis to address the research questions. Meteorological data were utilized, including wind rose analysis, atmospheric stability classification, determination of receptor points, and analysis of wind speed profiles, which were processed using WRPlot software. Furthermore, dispersion patterns were interpreted and visualized using Surfer software to identify pollutant dispersion characteristics. The results of the study indicate that the distribution of SO₂, NO₂, and TSP pollutants does not cause pollution in the surrounding environment, and the measured concentrations remain below the government-established ambient air quality standards and are consistent with the analysis data used during the AMDAL preparation. The scope of the measurements was limited to the distribution of air pollutants around the company’s operational area in accordance with the AMDAL document, and the measured parameters were key air quality indicators referring to Government Regulation No. 22 of 2021, Appendix VII, namely SO₂, NO₂, and TSP.

References

Arya, S. P. (1999). Air Pollution Meteorology and Dispersion. New York-Oxford: Oxford University Press.

Ashrafi, K., Fallah, R., Hadei, M., Yarahmadi, M., & Shahsavani, A. (2018). Source Apportionment of Total Suspended Particle (TSP) by Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) Modeling in Ahvaz, Iran. Arch Environment Contamination Toxicol., 75, 278-294.

Babagana-Kyari, M., Yaro, N. A., & Yakasai, K. M. (2024). GIS-based analysis of water quality risk factors and CKDu prevalence in Northern Yobe State, Nigeria. Indonesian Journal of Applied Environmental Studies, 5(2), 65-83.

Badan Pengendalian Dampak Lingkungan Hidup [BPDLH]. (1996). Keputusan Kepala Badan Pengendalian Dampak Lingkungan Nomor KEP-205/BAPEDAL/07/1996 Tentang Pedoman Teknis Pengendalian Pencemaran Udara Sumber Tidak Bergerak.

Bate, G. B., & Okori, S. U. N. (2023). Air quality indices assessment in Artisanal Gold Mining Areas of Zamfara State, Nigeria. Indonesian Journal of Applied Environmental Studies,4(2), 67-76.

Damara, D. Y., Wardhana, I. W., & Sutrisno, E. (2017). Analisis Dampak Kualitas Udara Karbon Monoksida (CO) di Sekitar Jl. Pemuda Akibat Kegiatan Car Free Day Menggunakan Program Caline4 dan Surfer (Studi Kasus Kota Semarang). Jurnal Teknik Lingkungan, 6(1), 1-14.

Djuned, M. (2016). Perlindungan dan Pelestarian Lingkungan Hidup Menurut Perspektif Al-Qur’an. Substantia: Jurnal Ilmu-Ilmu Ushuluddin, 18(edisi khusus), 86-83.

Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effect of Air Pollution on Human Health and Practical Measures for Prevention in Iran. J Res Med Sci., 21(65), 1-12.

Government of Indonesia [GoI]. (1999). Peraturan Menteri Lingkungan Hidup Nomor 41 Tahun 1999 Tentang Pengendalian Pencemaran Udara.

Government of Indonesia [GoI]. (2021a). Peraturan Pemerintah Nomor 22 Tahun 2021 Tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup.

Government of Indonesia [GoI]. (2021b). Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 6 Tahun 2021 Tentang Tata Cara dan Persyaratan Pengelolaan Limbah Berbahaya dan Beracun.

Gusdini, N., Mediana, N., & Pratiwi, R. (2023). Uji Kerja Insinerator dan Alat Pengendali Pencemaran Udara untuk Meminimalkan Dampak Limbah B3”. Jurnal Tekonologi Lingkungan, 24(1), 001-009.

Kementerian Lingkungan Hidup dan Kehutanan [KLHK]. (2021). Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor P.56/Menlhk-Setjen/2015 Tentang Tata Cara dan Persyaratan Pengelolaan Limbah Berbahaya dan Beracun dari Fasilitas Pelayanan Kesehatan.

Monk, K. A., & Priatna, D. (2022). Environmental security and resilience – Indonesia and global challenges. Indonesian Journal of Applied Environmental Studies, 3(1), 5-11.

Pambudi, A. S. (2023). Evaluation of government funding support for national priority development related to the environmental sector in regions. Indonesian Journal of Applied Environmental Studies, 4(1), 10-21.

Priatna, D., & Khan, S. M. (2024). The importance of education and role of educational institutions in climate change mitigation and achieving UN SDG 13 “Climate Action”. Indonesian Journal of Applied Environmental Studies, 5(1), 1-5.

Priatna, D., & Monk, K. A. (2023). Climate Change and Its Implications on Wildlife Conservation. Indonesian Journal of Applied Environmental Studies, 4(2), 64-66.

Rahmadhani, A. (2017). Pemodelan Dispersi Pencemaran Udara Sumber Majemuk Industri Semen di Kabupaten Tuban Jawa Timur [Thesis]. Surabaya: Institut Teknologi Sepuluh Nopember.

Sabin, T. J., Bailer-Jones, C. A. L., & Withers, P. J. (2000). Accelerated Learning Using Gaussian Process Models to Predict Static Recrystalization in an Al-Mg Alloy. Modelling Simul. Mater. Sci. Eng., 8(2000), 687-706.

Sugiharto, W. H. (2015). Pemetaan Sebaran Emisi SO2 Industri Semen di Tuban Berdasarkan Sebaran Gaussian [Thesis]. Surabaya: Universitas Airlangga.

Suryani, S., & Gunawan, A. U. (2010). Model Sebaran Polutan SO2 pada Cerobong Asap PT. Semen Tonasa. Kongres dan Seminar Nasional Badan Koordinasi Pusat Studi Lingkungan Hidup se-Indonesia ke XX, 14 Mei 2010 Pekanbaru.

United States Environmental Protection Agency [USEPA]. (2021). Meteorological Processors and Accessory Programs. https://www.epa.gov/scram/meteorological-processors-and- accessory-programs.

Downloads

Published

29-11-2025

How to Cite

Choeruddin, D. ., Sutanto, & Rosadi. (2025). Analysis of air pollutant distribution at the incinerator hazardous waste treatment facility in Nambo Village, Regency of Bogor. Indonesian Journal of Applied Environmental Studies, 6(2), 129–136. https://doi.org/10.33751/injast.v6i2.49