Environmental and health risk assessment of heavy metal contamination in rice from Gashua, Yobe State, Nigeria

YERIMA GWAMNA^{1,*}, M. Y. KABIRU¹, S. M. ABDULLAHI¹, A. AJI², C. D. ZAKARIA¹, S. A. ABDULLAZIZ¹, B. K. BELLO³, J. YERIMA⁴, S. D. CHABIRI⁵, A. GONI⁵, G. CHAMBA⁵, S. HAMMAN⁵

¹Postgraduate School, Public Health, Maryam Abacha American University (MAAUN), Niger Republic ²Amrita Vishwa Vidyapeetham, School for Sustainable Futures, Amritapuri Campus, Kollam, Kerala, India ³University of Maiduguri, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Borno State, Nigeria ⁴Faculty of Agriculture, University of Maiduguri, Borno state, Nigeria ⁵National Agency for Food and Drug Administration and Control (NAFDAC), Nigeria

*Corresponding author: yerimma6@yahoo.com & yerima.gwamna@nafdac.gov.ng

Submitted 16 May 2025; Accepted 26 October 2025; Published 27 October 2025

ABSTRACT

This study investigates heavy metal contamination in rice from Gashua, Yobe State, Nigeria—an important rice-producing area potentially affected by environmental pollution. Given the widespread consumption of rice as a dietary staple and the rising prevalence of kidney-related diseases in the region, the research aimed to quantify the concentrations of arsenic (As), cadmium (Cd), lead (Pb), and chromium (Cr) in rice and assess their associated health risks. Using a simple random sampling technique, 120 rice samples were collected, consisting of 90 paddy rice from four farms and 30 parboiled rice from Gashua Market. Samples were digested and analyzed using Microwave Plasma-Atomic Emission Spectrometry (MP-AES), and data were evaluated through one-way analysis of variance (ANOVA). The results showed a significant (P<0.05) variation in heavy metal concentrations among samples. Parboiled rice from Gashua Market contained the highest arsenic level (0.383 mg/kg), exceeding WHO and USEPA limits. Cadmium (0.0242 mg/kg) and lead (0.102 mg/kg) also surpassed permissible limits of 0.001 mg/kg and 0.0035 mg/kg, respectively. Hazard Quotient (HQ) values for children indicated low risk, with all values below the threshold of 1. However, in adults, the HQ value for chromium at Gashua Market (2.162) exceeded the safe limit, suggesting potential health risks. The Hazard Index (HI) for both adults and children was greater than 1, primarily due to elevated concentrations of arsenic and chromium, signaling possible non-carcinogenic effects. Incremental Lifetime Cancer Risk (ILCR) analysis further indicated an increased risk of cancer from prolonged exposure. In conclusion, rice grown and sold in Gashua is contaminated with heavy metals at levels posing both carcinogenic and non-carcinogenic health risks. These findings underscore the urgent need for continuous monitoring, stricter regulatory enforcement by agencies such as NAFDAC, and proactive public health interventions to ensure food safety and protect community health.

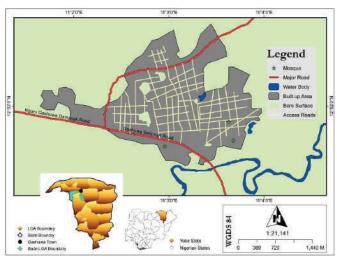
Keywords: Hazard quotient, heavy metals, ILCR, MP-AES, Parboiled rice

INTRODUCTION

The world's third-largest crop is rice and it plays a significant role in human nutrition (Proshad et al., 2019). Rice cultivation however is known for heavy metal accumulation in its grain (Zhao et al., 2010). Because of anthropogenic activities, the concentration of heavy metals in the soil is increasing gradually (Bakshi & Abhilash, 2020). The increase is attributed to various human activities such as inappropriate dumping of waste in textile industries, metal mining, tanneries, paper industries and the release of untreated industrial effluents in water bodies which further leach and accumulate in soil (Fayiga & Saha, 2016; Rai et al., 2019). Human activities can also cause heavy metal contamination through applications of fertilizers containing metals, animal manures, and untreated sewage sludge which can result in high concentrations of heavy metals in agricultural soils. (WHO, 1993). Other anthropogenic major sources toxic

contamination in the environment include Industrial discharge, application of agrochemicals, and mining (Kamani et al., 2018).

Human exposure to toxic metals can occur either through inhalation of polluted air or diet however exposure through diet is one of the commonest ways through which toxic elements get into the human body. (Deng et al., 2019). Grains are major diets that provide carbohydrates and other nutrients to human beings however they may at the same time contain toxic metals which the human body can easily be exposed to via ingestion as rice is known to easily accumulate more metals than other cereals. (Khanam et al., 2020). Scholarly findings have shown paddy rice containing Cadmium and lead concentrations above acceptable limits are not safe for consumption by humans since they can cause a lot if illness like kidney dysfunction, bone pain, and lung cancer when consumed in large quantities

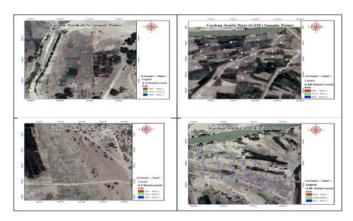

over time (Eske, 2020; Genchi et al., 2020; Tatah-Mentan et al., 2020; Hasan et al., 2022).

Heavy metals such as Arsenic are harmful and have been linked to different types of cancers in humans (Majumder & Banik, 2019; Oberoi et al., 2019; Arcella et al., 2021). Heavy metals are d-block elements on the periodic table; they have high density and specific gravity and they are considered harmful even at a lower concentration level, examples are (As), Lead (Pb), Cadmium (Cd), Platinum (Pt), Palladium Manganese (Mn), Mercury (Hg), Silver (Ag), Zinc (Zn), Copper (Cu), Nickel (Ni), Iron (Fe) and Chromium (Cr); Some of the human and natural sources of these metals in the environment include industrial waste, automotive exhaust, industrial discharge, rock weathering and mining. Heavy metals are nonbiodegradable and can easily be accumulated in living organisms (Manavi et al., 2019). In recent times heavy metals like Pb, Mn, Hg, and Cd have attracted a lot of attention because of their widespread exposure (Khalef et al., 2022). This study aims to bridge the research gap by analyzing heavy metal contamination in rice from Gashua, Yobe State, and evaluating the associated health risks using hazard quotient (HQ), hazard index (HI), and incremental lifetime cancer risk (ILCR) metrics. The objectives of the research are to assess the extent of heavy metal pollution in paddy and parboiled rice and carry out a health risk assessment.

MATERIALS AND METHODS

Study Area

The town Gashua in Bade Local Government area of Yobe State is located between latitude 120 52' 05 N and 120 87'11 N and longitude 110 57'26 E and 110 02'47 E (Figure 1). Among the towns in Bade, Gashua is one of the largest having an area of 3,336 square kilometers and a population of 139,804 as of the 2006 census; male was 73,709 and female 66,095. (Census, 2006). Gashua town lies in the plain region of the savannah and the town has a fertile soil which supports the cultivation of rice, millet, groundnut, guinea corn, and sorghum. The vast land within the LGA supports the rearing of animals. Among the cereals cultivated within Gashua, rice is one of the major grains cultivated because of the river that passes through the town (Oladimeji, 2001). The climate is characterized by high amount of temperature and low annual rainfall towards the northern region (Kimmage, 2012). Rainfall ranges between 400 mm and 800 mm with an annual mean rainfall of 750 mm. The Mean annual temperature is usually around 39°C and the mean monthly value range is between 27°C in the coolest month of December to January and 32°C in the hottest month of April to May. The major river that flows in Gashua and the adjoining area is the River Komadugu Yobe (Kimmage, 2012).



Source: Adopted and Modified from the Political Map of Yobe State, 2019) (Saleh & Ahmed, 2019

Figure 1. Map of the study area (Bade LGA).

Sample Size and Collection of Sample Sampling paddy rice at the farm

The rice samples were collected after harvest between 29th November 2022 to 26th December 2022. Simple random Sampling (Systematic sampling) was used in collecting rice samples at the various farms (Figure 2). Sampling units were created in a range of 20/20 ft to make at least 300 units. Numbers were assigned to all the elements within the population (1-300). From each of the locations, a sample size of (30) was divided by the population (300), S = n/N,30/300 = 6. Every 6th item was chosen within the sampling unit. The random start was obtained by randomly selecting an integer. (Muhammad, 2017; Flatman & Yfantis, 1984; Mulla & Bhatti, 1997). Thirty (30) samples were then collected within the sampling units, sealed in polyethylene sampling bags, and taken to the laboratory for analysis. Geographical positioning (Longitude & Latitude) of the sampling points was recorded using GPS (Lu et al., 2020).

Figure 2. Spatial distribution of sampling coordinates from Gashua, North (A), Southwest (B), South (C) and Southeastern (D) of the study Area.

Sampling parboiled rice at the market

Simple random sampling was used to collect the parboiled rice samples at the market. A list of ninety (90) parboiled rice sellers from the market was collected at various shades/shops and numbers were assigned to each seller. Using a computer, a random number generator was used to generate a list of random numbers corresponding to the sample size (30). The random numbers were matched to the numbers on the sampling frame. (Muhammad, 2017; Najib, 2015). Thirty (30) samples were then purchased, sealed in polyethylene sampling bags, and taken to the laboratory for analysis. The analysis was carried out at Chemistry Laboratory, Bayero University Kano State, Nigeria.

Sample Size

A total of ninety (90) samples of freshly harvested paddy rice samples at four different locations (30 from each farm) and Thirty (30) samples of parboiled rice from the market were sampled making a gross total of one hundred and twenty (120) samples were collected.

Sample preparation (paddy and parboiled rice)

The rice samples (Paddy rice) collected from the farm were rinsed with distilled water and deionized water to remove dust and other unwanted materials. The samples were then dried to constant weight in an oven at 60° C. The Paddy rice was hulled using a laboratory dehuller and then pulverized into fine powder. The powder was sieved to less than 0.15mm, labeled, and stored in plastic bags before analysis.

The parboiled rice samples were rinsed with distilled water and deionized water to remove dust and other unwanted particles. The samples were then dried to constant weight in an oven at 60° C after which they were pulverized into fine powder and sieved to less than 0.15mm. The powdered Samples were labeled and stored in plastic bags before analysis.

Digestion

Using a weighing balance, two (2) grams of each powdered sample were weighed and transferred into a crucible. The sample was incinerated at 6000O C in a Carbolite muffle furnace for three (3) hours., 10.0 ml of 6 N HCl was added to the ashed sample and then placed in a water bath and boiled for 10 minutes. The sample was carefully removed, filtered, and transferred into a 100 ml volumetric flask. The filter paper was washed down and the volume was made up to 100 ml using deionized water. Ten (10) milliliters of the digested sample were transferred to the sample container and taken into the MP-AES for analysis. Reading was recorded in ppm (AOAC, 2010).

Analysis Using MP-AES (Principles of MP-AES)

The principle of MP-AES (Microwave Plasma-Atomic Emission Spectrometry) is based on the excitation and emission of atoms in a high-temperature plasma generated by microwave energy. MP-AES takes advantage of the high-temperature plasma to atomize and excite the sample and then measures the resulting emission where the emitted photons are collected and separated into their component wavelengths using a spectrometer. A diffraction grating disperses the emitted light and a detector measures the intensity of each wavelength of light to determine the elemental composition of the sample. The method is known for its simplicity, speed, and wide dynamic range providing accurate and precise elemental analysis for a variety of samples. (Ozbek et al., 2019).

Instrument specification

The MP-AES instrument (Agilent Technologies, USA) was used for elemental analysis. Calibration was performed using single-element standards from Sigma-Aldrich, with calibration points ranging from X to Y (R 2 = 0.99). The limit of detection (LOD) and limit of quantification (LOQ) were determined for each metal as follows: As (LOD = 0.01 ppm, LOQ = 0.03 ppm), Cd (LOD = 0.005 ppm, LOQ = 0.015 ppm), Pb (LOD = 0.01 ppm, LOQ = 0.03 ppm), and Cr (LOD = 0.02 ppm, LOQ = 0.06 ppm). Table 1 describe the calibration details.

The calibration curves were constructed using single-element standards purchased from Sigma-Aldrich. The precision of the analysis was verified with %RSD values for replicate measurements, which were consistently below 3%.

Table 1. Calibration details for heavy metals analysis using MP-AES.

Element	Calibration Range (ppm)	Equation	R ² Value
As	0.01-1.0	y = 0.985x	0.995
Cd	0.005-0.5	y = 1.025x	0.996
Pb	0.01-2.0	y = 0.967x	0.998
Cr	0.02-1.5	y = 1.015x	0.997

Operational procedure

The MP-AES instrument was set up and calibrated according to the manufacturer's guidelines. It was ensured that the correct plasma gas flow rates, sample introduction method, and other parameters were optimized for the analysis. The prepared sample was introduced into the MP-AES instrument for analysis. This was done using nebulization techniques. The plasma was then generated in the MP-AES instrument using microwave energy. This creates a high-temperature

ionized gas phase where the sample is atomized and excited. An atomic emission from the excited sample was measured using a spectrometer. The emitted radiation was dispersed into its component wavelengths and detected by a detector. The intensities of the emitted wavelengths were recorded automatically. The recorded emission intensities were compared with calibration standards and the concentration of elements in the sample were determined. Calibration curves or standard addition methods was used for this quantification. The obtained analytical results were analyzed and processed and a report was generated. (Ozbek et al., 2019)

Data Analysis

The data generated were subjected to analysis of variance (ANOVA) using Special Package for social sciences (SPSS) 25.0 origin pro 8 Where the analysis indicated significant difference mean which were separated using Duncan's multiple range test (DMRT).

Ethical Consideration

All responsible individuals were met in person. The Chairman of Bade local government area, the Emir of Bade LGA, the Divisional police officer of Gashua town, the Ward Head, and the Rice farmers were met on 29th September and 30th September 2022. The purpose of the study was duly explained and they all acknowledged the consent letter. Permission was outrightly granted by all the parties to proceed with the research.

Determination of Health Risk Index (HRI)

The Hazard quotient (Noncarcinogenic risk) was determined by employing the equation below:

$$HQ = DIM/RfD...(i)$$

Where RfD is the reference oral dose (mg/kg/day) using specific values provided by the United States Environmental Protection Agency (USEPA) for various concentrations in mg kg-1/day as 0.003, 0.001, 0.0035 and 0.003 for As, Cd, Pb, and Cr (the United States Environmental Protection Agency, 2020; Gerba, 2019).

The Daily Intake of Metals (DIM) was computed using the below equation. For a single substance Noncancer risks are expressed in terms of a hazard quotient (HQ) and for multiple substance it is expressed as hazard index (HI) (Gerba, 2019). Harzard quotient less than one HQ < 1 indicates no significant risk or significant toxicity and hazard quotient greater than one HQ >1 could represent a potential risk (Gerba, 2019).

DIM = concentration of metal x Daily Food intake /Average body weight...(ii) The calculation factored in an average adult body weight of 65 kg and a children weight of 32 kg in Nigeria, alongside an average rice consumption of 0.15 kg day⁻¹ per capita for adult and 0.075mgkg⁻¹ for children. (USEPA, 2021). The HRI value exceeding 1 is deemed unsafe for human health (USEPA, 2020).

The human health index investigated in rice samples grown and obtained from different locations of Gashua town with the parboiled rice sample obtained from the Gashua market of Bade Local government of Yobe State was shown in Table II. It was determined by applying the equation from. HQ = DIM/RFD. The HQ was used to assess whether the intake of the contaminant through rice consumption is within acceptable levels or if it poses a potential health risk.

Carcinogenic risk

The carcinogenic risk is the possibility of developing cancer through the intake of carcinogenic heavy metals in the rice samples. This was estimated using the Incremental lifetime cancer risk (ILCR) equation below. (USEPA,2014; Gerba, 2019).

Where CDI is a chronic daily intake of the heavy metal (carcinogen), mg/kg bw/day which represents the lifetime average daily dose of exposure to the chemical carcinogen, CSF represent the cancer slope factor which denotes the risk produced by a lifetime average dose of 1 mg/kg bw/day and it is contaminant specific. CDI was calculated using the equation below.

$$CDI = \frac{EDI \times EF \times ED}{AT} \dots (v)$$

EF is exposure frequency (days/year), according to USEPA 365 days/year, ED is the exposure duration (years), (Gerba, 2019; USEPA, 2005). According to the World Bank, the life expectancy of an adult Nigerian is 54 years (World Bank,2014). AT is average time- the period over which exposure is averaged (days). For carcinogens, the average time is 25,550 days (365 days/year x 54 years) based on the lifetime exposure of 54 years. Cancer risk of 1 x 10⁻⁴ to 1 x 10⁻⁶ are considered acceptable (USEPA,2014) which indicates a probability of 1 in 10,000 individuals and 1 in 1,000,000 chances of individuals developing cancer during a lifetime.

Hazard Index (HI)

The hazard index (HI), represent potential risk from the mixture of chemical elements, the sum of all hazard quotient is the HI and was calculated for the rice samples using the equation below.

$$HI = \Sigma HQ ... (vi)$$

If the HI < 1, chronic risks are assumed unlikely to happen, while non-cancer risks are likely, if $HQ \ge 1$

chronic risk are likely.

RESULTS AND DISCUSSION

Rice samples from all study sites were analyzed to evaluate the extent of metal pollution. The mean concentrations of Arsenic (As) in the rice samples varied across locations, with the highest concentration observed in parboiled rice from Gashua Market (GMK: 0.3830 mg/kg) and the lowest concentration recorded in samples from Gashua East (SE: 0.0597 mg/kg), as shown in Table 2. The standard deviations further highlight the variability in Arsenic levels within the sampled locations.

The elevated Arsenic levels in the GMK sample may be attributed to several factors, including the use of contaminated water during parboiling, accumulation of Arsenic in rice husks, or the application of pesticides. These factors are known to contribute to heavy metal contamination, particularly in regions with high environmental pollution. However, as visualized in Figure 3, cooking processes typically reduce the overall Arsenic content in rice, thereby lowering dietary intake. This finding is consistent with the research of Gunduz & Akman (2013), who reported that cooking can significantly decrease the Arsenic content in rice, providing a mitigating effect on potential health risks.

Table 2. Concentrations of heavy metals (ppm) in rice samples collected from various sampling sites.


Locations	$\mathbf{A}\mathbf{s}$	Cd	Pb	\mathbf{Cr}
GMK	0.3830^{a}	$0.0242^{\rm b}$	$0.1020^{\rm d}$	0.2810°
GWIX	± 0.2451	± 0.0088	± 0.0467	± 0.2183
GN	$0.0610^{\rm b}$	$0.0283^{\rm b}$	0.1877^{a}	0.3455^{a}
GIV	± 0.0524	± 0.010	± 0.0634	± 0.3007
GS	$0.0690^{\rm b}$	0.0330^{a}	0.0907^{e}	$0.2850^{\rm b}$
G.5	± 0.0711	± 0.014	± 0.0415	± 0.2071
SE	0.0597^{b}	$0.0262^{\rm b}$	$0.1667^{\rm b}$	0.2815°
SE	± 0.0440	± 0.0133	± 0.0547	± 0.2462
SW	$0.0697^{\rm b}$	$0.0265^{\rm b}$	0.1533°	$0.2567^{\rm d}$
311	± 0.0422	± 0.0127	± 0.0585	± 0.2344
Minimum value	0.01	0.00	0.01	0.00
Maximum value	0.31	0.06	0.31	1.23
WHO/USEPA	0.003	0.001	0.0035	0.003

 $^{^{}a,\ b.}Means$ within each column with different superscripts are significantly different at $P \leq 0.05$

GMK= Gashua Market, GN= Gashua North, GS= Gashua South, SE= South East, SW= South West, WHO= World Health Organization, USEPA= United State Environmental protection Agency.

The study area has been shown to contain high heavy metals above WHO permissible limits in their drinking water. (Amshi et al., 2019). Long time exposure to heavy metals like Arsenic has been linked to various health hazards like skin lesions, cancers, cardiovascular diseases, and developmental problems in children (Al-Saleh & Abduljabbar, 2017). The outcome of the current study agrees with the scholarly work of Watson & Gustavi (2022) who showed 2% of unpolished rice samples had

Arsenic concentration above WHO safety limit; they depicted the range of contamination from 4.85-269.4kg-1 with an average of 88.4µg/kg-1 which undoubtedly shows much higher concentration.

Figure 3. Visual presentation of heavy metals concentration (ppm) in rice samples collected from various sampling sites (Please note that the specific RfD values and guidelines for contaminants can vary depending on the contaminant in question and the regulatory standards of the region; Average body weight for adult was taken as 65 and for children 32).

The research found that arsenic and chromium concentrations in rice samples exceeded permissible limits, posing both carcinogenic and non-carcinogenic health risks. These findings align with Yalwa et al. (2023) but contradict Jarjees & Darwesh (2023), who observed lower arsenic levels due to soaking practices.

Despite parboiling rice in the current study, the level of Arsenic (As) in the GMK sample (0.383 mg/kg) was significantly higher than the WHO/USEPA permissible limit of 0.003 mg/kg. Additionally, Arsenic concentrations from other locations, including Gashua North (GN: 0.061 mg/kg), Gashua South (GS: 0.069 mg/kg), Gashua East (SE: 0.0597 mg/kg), and Gashua South West (SW: 0.0697 mg/kg), all exceeded the acceptable limit. This indicates a widespread issue of Arsenic contamination across the sampled areas.

A plausible explanation for these elevated levels could be the environmental anthropogenic activities around the study locations. The frequent burning of fossil fuels near the Gashua market likely releases Arsenic into the surrounding air, which can settle onto parboiled rice during processing. Furthermore, the proximity of agrochemical shops around the market presents another potential source of contamination, as heavy metals from fertilizers, pesticides, and related products can disperse through air or dust particles and contaminate the rice (Khan et al., 2018).

Similar findings have been documented in previous studies. Abdullaziz et al. (2022) estimated the Hazard Index (HI) of heavy metals in ambient air and reported a significant non-carcinogenic risk associated with these metals, though surface dust showed no immediate risk. Importantly, their study highlighted that cumulative

Incremental Lifetime Cancer Risk (ILCR) values for metals such as Cr, Cd, As, Pb, and Ni indicated a potential cancer risk via inhalation pathways. This aligns with the observations in this study, emphasizing the need to control atmospheric heavy metal pollution.

Other anthropogenic activities, including automobile exhaust, smelting, and the use of insecticides, are also recognized as significant sources of heavy metal contamination. For instance, lead is commonly released through automobile exhaust, while smelting and insecticides contribute to Arsenic pollution (Ugulu et al., 2021). Khan et al. (2021) also highlighted the persistent nature of heavy metals in the environment, noting that their inability to decompose makes them particularly concerning. These metals can accumulate in soil, air, and water, entering the food chain and posing significant risks to human health. The results of this study underscore the urgent need for mitigation strategies to reduce heavy metal contamination in rice and other food products, particularly in areas with high environmental and anthropogenic pressures.

Cadmium (Cd) concentrations were present across all the locations with GS showing the highest concentration (0.0330 mg/kg) and GMK having the lowest concentration (0.0242mg/kg). Standard deviations are relatively small indicating more uniformity in Cadmium levels within locations. The concentration of Cd in the parboiled rice is lower compared to the level of As. When Cd is inhaled it can result in kidney diseases while its toxicity also contributes to nerve and bone disorders in humans (Khan et al., 2020 and Tariq et al., 2021). Contrary to the current study Nader et al., (2016) and Ahmad & Qadir (2023) in their study did not detect Cadmium in rice samples likewise the Studies conducted by Juliet & Ndago (2023) at Wukari. Chalestori et al., (2016) however in their study showed higher concentrations of heavy metals, Cd, As, and Pb in Iranian rice.

The results agree with the previous work (Ijeoma et al., 2020; Ijeoma et al., 2021) where they showed lower concentrations of Cd and other heavy metals in some imported and indigenous rice brands sold within Abuja, Nigeria. The work of Waribo et al. (2023) also showed a lower concentration of Cd in their study. Shahriar et al. (2023) in their study showed much higher values for Cd (1.13 mg/kg) which is greater than the WHO acceptable Cadmium Concentration limit. revealed 0.0242mg/kg in GMK was very high exceeding the limit of 0.001mg/kg while GN, GS, SE, and SW ranging from 0.0262 to 0.033 mg/kg were all above the permissible limit.

Lead concentrations showed more variation with GN having the highest level (0.1877mg/kg) and GS having the lowest value of (0.0907mg/kg). Standard deviation values were moderately high suggesting some variability within locations. The high heavy metal variability across

different locations suggests the influence environmental factors and agricultural practices (Huo et al., 2016). The result agrees with the work of Wahyuningsih, (2023) where their analysis for both local and imported rice samples in Semarang showed Pb values ranging from 0.561-0.456 mg/kg in the Indonesia sample and 0.307 mg/kg in the United States sample which all exceeded Indonesia recommended level. Shahriar et al., (2023) in their study showed a higher value for Pb (6.87 mg/kg) which is greater than the WHO acceptable limit. The current result agrees with the work of Juliet and Ndago (2023) at Wukari where they detected Pb levels in rice samples ranging from 0.024mg/kg to 0.12mg/kg which they attributed to the residual effect of agrochemicals. The results also agree with the work of Yalwa et al., (2023) who showed a high level of Pb in rice from Damashewa, Jigawa state. Chyad et al., (2022) equally showed higher levels of Pb with values ranging from 1.805-4.776 mg/kg respectively.

From the current study Lead concentration from all five locations superseded the recommended level especially for the parboiled sample from GMK with 0.102mg/kg and from a sample from GN with a concentration level of 0.1877mg/kg exceeding the limit of 0.0035mg/kg which were significantly higher than the recommended limit. Lead levels are of serious concern, especially in GN locations where the concentration is markedly high suggesting a potential acute risk to public health. Possible sources of Lead contamination may originate from occupational settings such as battery workers, smelters, absorption of Lead from water, or other environmental sources (Al- Saleh & Abduljabbar, 2017; Khan et al., 2021; Ugulu et al., 2021). Crops tainted with these metals may pose significant health risks to individuals potentially leading to severe ailments (Saleem et al., 2020). Myriad of studies support the carcinogenic properties of heavy metals contributing to conditions like blood, bone, heart, and kidney diseases (Hashem et al., 2020; Javed et al., 2020).

Chromium concentration in location GN (0.3455 mg/kg) is highest and lowest in SW (0.2567 mg/kg) all above the acceptable limit of 0.003mg/kg set by WHO/USEPA. The Highest concentration was recorded in GN (0.3455mg/kg) which agrees with the result of Wahyuningsih (2023) where they showed a higher concentration of Crranging from 241-0.723mg/kg. Shahriar et al. (2023) in their studies equally showed a higher value for Cr (0.43 mg/kg) which is greater than the WHO acceptable limit of 0.003mg/kg. The result however disagrees with the result of Ahmad & Qadir (2023), who showed lower levels of Cr likewise the outcome of Waribo et al. (2023) and also Juliet & Ndago (2023) in their study at Wukari did not detect Cr in rice samples. A comparison against WHO/USEPA standards for heavy metals in food products (Arsenic: 0.003 mg/kg, Cadmium: 0.001

mg/kg, Lead: 0.0035 mg/kg, Chromium: 0.003 mg/kg) highlights that metal concentrations in most locations far exceed the recommended limits.

This suggests potential health risks associated with consuming rice from these areas (Tariq et al., 2021). The high concentration of Chromium levels in all locations especially in GN indicates a significant health hazard. These heavy metals persist in the environment inducing severe health hazards for both humans and animals primarily because of their enduring presence and inherent toxicity (Zaheer et al., 2020). Contamination with these metals can induce various health hazards such as cancer, mutations, teratogenicity, disruption of hormones, irritation of the skin and eyes, liver damage, tremors, decreased fertility, effects on the central nervous system, kidneys, headaches, nausea, dizziness, poisoning leading to coma, endocrine disruption, respiratory illnesses, convulsions, abdominal pain, and loss of muscle coordination (Roya & Ali, 2017; Rehman et al., 2019; Ugulu, et al., 2019). Research in Perak, Malaysia by Agatha et al., (2023) showed high levels of As, Cd, and Cr in rice due to historical mining activities presenting a significant health risk. Similarly, a study by Parvez (2022) showed higher concentrations of Arsenic and Cadmium levels in rice exceeding WHO/USEPA acceptable limits. The results emphasized the importance of stricter waste disposal regulations, agricultural monitoring, consumer education to mitigate health risks associated with heavy metal contamination.

Health Risk Assessment

The health risk calculation showed potential for health risk due to the presence of As, Cd, Pb, and Cr in analyzed samples as indicated in the Table 3. Calculation of hazard quotient (HQ) of As in children ranged from 0.0922 in SE to 0.8266 in GS as well as 0.0454 in SE to 0.0469 for adults in GN site respectively. For Cadmium (Cd) in children, the concentrations were 0.1223 in SE, 0.1242 in SW, 0.1327 in GN, and 0.1538 in GS which where all higher than the concentration of 0.1134 in the parboiled rice sample obtained from Gashua Market while adults concentration for Cadmium ranged from a value of 0.0605 in SE locations to 0.0754 in GS, this concentration values are higher than the reference dose in part per millions per day and also higher than the concentrations investigated in parboiled rice obtained from GMK respectively as indicated Table 3.

Figure 4 showing the comparison of Hazard Quotient (HQ) values for adults and children across study locations. Adult's concentration for Lead is between 0.0598 in sample from GS which is less of concentration when compared with values recorded for the samples in SW as 0.1011, SE as 0.1099 and 0.1238 in GN while the rate of investigated Lead concentration from rice sample for children varies as 0.1215 in GS, 0.2053 in SW, 0.2233 in SE and 0.2514 in GN. This simply signifies that all

locations have HQ values for Lead below 1 in children. Chromium presents a stark contrast with the HQ exceeding 1 in GMK for adults (2.162) indicating an unsafe level of exposure and a serious noncarcinogenic risk as shows in Figure 8; this aligned with the studies conducted by Guo et al. (2022) where they showed noncarcinogenic risk index of heavy metals for adult at 3.558 and that for children at 6.014 which were all greater than 1. The other locations in the present study have HQ values below one (1) which is considered safe. In children the HQ observed for chromium at GN was (0.5398); which is a warning sign indicating a prospective significant risk to children within these locations.

Table 3. The human Incremental Lifetime Cancer Risk (ILCR) index for rice sample measured at five different sample sites.

Children						
Locations	As	Cd	Pb	Cr		
GMK	4.30x10 ⁻²	1.81x10 ⁻⁴	7.65x10 ⁻⁴	1.05x10 ⁻²		
GN	$6.86 \mathrm{x} 10^{-3}$	$2.12x10^{-4}$	$1.40 \mathrm{x} 10^{-3}$	$1.29 x 10^{-2}$		
GS	$1.16x10^{-3}$	2.47×10^{-4}	6.80x10 ⁻⁴	$1.06 x 10^{-2}$		
SE	6.71×10^{-3}	1.96x10 ⁻⁴	$1.25 x 10^{-3}$	$1.05 x 10^{-2}$		
SW	1.17x10 ⁻²	1.98x10 ⁻⁴	$1.14x10^{-3}$	$9.62 x 10^{-3}$		
Adults						
GMK	8.61×10^{-3}	3.65×10^{-4}	$1.53 x 10^{-3}$	2.10×10^{-2}		
GN	$1.37 x 10^{-2}$	4.24x10 ⁻⁴	2.81×10^{-3}	$2.91 x 10^{-2}$		
GS	$1.53x10^{-2}$	4.95x10 ⁻⁴	$1.36 x 10^{-3}$	$2.13x10^{-2}$		
SE	$1.34x10^{-2}$	3.93×10^{-4}	$2.50 \mathrm{x} 10^{-3}$	2.11x10 ⁻²		
SW	1.56x10 ⁻²	3.97x10 ⁻⁴	$2.29 x 10^{-3}$	1.92x10 ⁻²		
ILCR	10 ⁻⁶ -10 ⁻⁴					

USEPA (2022) Standard limit As $1.5 \rm mg/kg/dy~Cd~0.1 mg/kg/dy~Pb~0.1 mg/kg/dy~Cr~0.5 mg/kg/dy$

Figure 4. Comparison of Hazard Quotient (HQ) values for adults and children across study locations.

The hazard quotient (HQ) indicated that Arsenic content in children was high for GMK (0.5984) as shown in Figure 5, while GS (0.8266) indicate below one as shown in Figure 6; still presented an alarming sign indicating unsafe levels and a potential health risk for children consuming rice from these locations. The values

for GN, SE, and SW were all below 1 suggesting lower risk levels. The HQ values for Arsenic were equally all below 1 for adults indicating a lower health risk compared to children. However, GMK and GS still show the highest values of 0.2946 and 0.4069 respectively which warrants attention. Studies have linked prolonged or long-term exposure to heavy metals with adverse health effects in multiple organ systems like the stomach, kidneys, liver, and coronary heart disease and diabetes (Saleem et al., 2019; Ugulu et al., 2021).

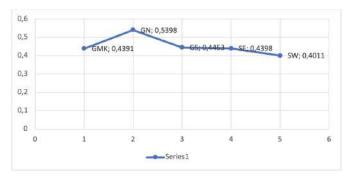


Figure 5. HQ value for Cr in all locations (children).

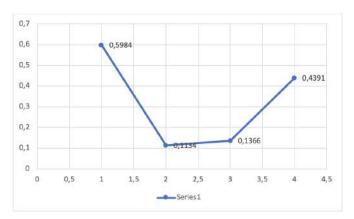


Figure 6. HQ value for children (GMK): As, Cd, Pb, and Cr.

The present study aligned with the scholarly work of Sibuar et al., (2022) where they quantitatively analyzed heavy metal in rice and evaluated the human health risk assessment of heavy metals in paddy plants collected from Perak, Malaysia. They presented their results for HQ for the heavy metals by adults and children in descending order of As>Cr>Cu>Pb>Cd. The HQ for As was the highest and exceeded 1 thou in the present study As range was 0.8266 which was closer to the threshold. They presented their range as 2.08 to 3.33 and 2.197 to 3.530 for both adults and children respectively which suggested As poses potential noncarcinogenic risks.

Their result showed the combined Hazard index (HI) value for all the five studied heavy metals was above 1 indicating a potential non-carcinogenic risk to human health, this aligned with the current study where the HI for both Adult and children were above 1 at 5.571 and 4.5107 respectively. The HI value from their study can

likely be explained mainly by the As contamination, as its HQ value for As accounted for a huge proportion of the HI; in contrast Cr contributed to the high HI in Adult for the current study with 2.162 and As at different locations contributed to the high HI in children with 0.8266, 0.5984 and in chromium with 0.5398 (Table 2).

The HO values for Cadmium in children are all below 1, with GS having the highest value at 0.1538 (Figure 7). These values suggest a concern for long-term exposure especially in GS. Similar to children, the HQ values for cadmium in adults were all below 1 but present in all locations with GS having the highest at 0.0754 indicating potential concerns for long-term health effects. Research carried out by Shakerian et al. (2012) and Afzal et al. (2020) recorded higher levels of Cd and Zn and lower levels of Cu compared to current findings of this study. Cadmium exposure can cause kidney dysfunction and bone demineralization, and Lead exposure in children can result in cognitive impairments and developmental delays, while in adults, it causes hypertension and kidney damage (Shrestha & Kazama, 2016; Ihedioha, 2021; Sibuar et al., 2022; Sun, 2023).

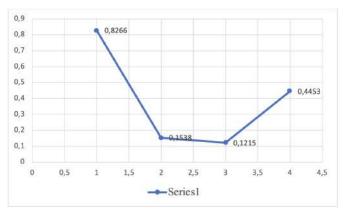


Figure 7. HQ value for children (GS): As, Cd, Pb, and Cr.

The present study also agrees with the outcome of Yin et al., (2023) where they assessed heavy metal content and consumption risk of some selected paddy fields in Malaysia. They showed HQ values of Cd exposure for adults were below 1 (HQ < 1) except for the HQ values in other locations which were more than 1. The presence of Cd could cause potential non-carcinogenic health risks such as cardiovascular disease, kidney dysfunction, and severe bone pain (Nishijo 2017; Rahimzadeh et al., 2017; Zulkafflee et al., 2019).

Neisi et al., (2023) in their study also showed contrary results to the present study where they showed the non-carcinogenic risk value associated with heavy metals in adults and kids were below 1 for both HQ and HI although the current study recorded HI greater than 1. Their result showed As has the highest HQ values for kids, measuring 0.0127 for Tarom rice. The maximum HI values for kids were associated with As, measuring 0.0137, 0.0048, and 0.0016 for Tarom rice and radish

respectively. The highest HQ for adults was associated with As values ranging 0.0059, 0.0017, and 0.0028 for Tarom rice and radish respectively. The results of Jarjees and Darwesh (2024) also aligned with the current study where they showed HQ were found to be below 1, except for As which exceeded the threshold. They showed the values for Carcinogenic risk for all genders ranged from 2.03×10^{-6} to 9.08×10^{-3} .

In the current study, all locations have HQ values for Lead below 1 for both children and adults with the highest being GN at 0.2514 for children and GN (0.1238) for adults although below the threshold. This suggests a potential risk that should be monitored especially since children are more susceptible to lead exposure and the cumulative effects of lead (Fan et al., 2017; Amir et al., 2019; Saleem et al., 2020).

The HQ for chromium is relatively higher in GN (0.5398) and also elevated in GMK, GS, SE, and SW indicating a significant risk to children in these locations while chromium (Cr) presents a stark contrast with the HI exceeding 1 in GMK for adults (2.162) indicating an unsafe level of exposure and a serious non carcinogenic risk (Figure 8). The other locations have HQ values below 1, suggesting a lower risk (Saleem et al., 2020).

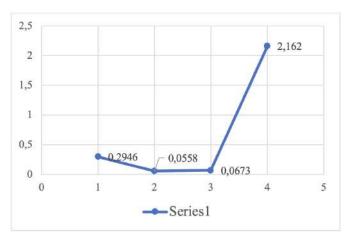


Figure 8. HQ value for adults (GMK): As, Cd, Pb, and Cr.

The high level of chromium in the sample investigated for adults from GMK may be a result of soil contamination and water contamination during parboiling (Table 2), this contamination could result from industrial activities, waste disposal, or the use of certain fertilizers or pesticides containing chromium which could potentially affect the local environment including nearby water sources or other crops leading to a broader ecological impact (Qian et al., 2010; Ugulu et al., 2021). Elevated levels of chromium, particularly hexavalent chromium (a toxic form) can pose health risks if consumed regularly. It may cause stomach upset, allergic reactions, or even lead to more severe conditions (Ugulu et al., 2019; Zaheer et al., 2020; Saleem et al., 2020).

Incremental Lifetime Cancer Risk (ILCR)

In the context of evaluating the risk of carcinogens, the ILCR was computed to gauge the likelihood of a person getting cancer throughout their lifetime. For instance, a cancer risk of 10^{-4} signifies a probability of one in 10,000 individuals developing cancer (Ma et al., 2017). According to Ma et al., (2017) and Cao et al., (2015), the risk levels within the range of 1.0×10^{-6} to 1.0×10^{-4} are considered acceptable.

Table 3 shows the incremental lifetime cancer risk (ILCR) of heavy metals in rice for children and adults across the five locations: GMK, GN, GS, SE, and SW. For children, the concentration range were, in GN for As (6.86x10⁻³), SE for As (6.71x10⁻³), GS for Lead (6.80x10⁻⁴), GMK for Lead (7.65x10⁻⁴) and SW for Cr (9.62x10⁻³). Significant concentrations at other locations were observed in GMK for Cr (1.05x10⁻²), SE for Pb (1.25x10⁻³), and GS for As (1.16x10⁻³). In terms of the carcinogenic risk in children, Pb in GS and GMK are considered safe while As in GN & SE, Cr in SW & GMK, Pb in SE and As in GS all were not within the threshold value of 10⁻⁴ & 10⁻⁶.

For adults, the concentrations recorded for different locations were, in GMK for As (8.61x10⁻³), GS for Cd (4.95x10⁻⁴), GN for Pb (2.81x10⁻³), and in GN for Cr (2.91x10⁻²). Other concentrations observed were, in GMK for As (1.34x10⁻²), GMK for Cd (3.65x10⁻⁴), GS for Pb (1.36x10⁻³), and SW for Cr (1.92x10⁻²). Only Cd in GS & GMK were within the threshold, all the other location exceeds the threshold value.

From the results, the ILCR assessment of heavy metals in rice from GMK, GN, GS, SE, and SW shows significant variations in the heavy metals for both children and adults. These variations were influenced by local environmental conditions, agricultural practices, and industrial activities or factors specific to each location (Kohzadi et al., 2019; Zhang, 2020; (Nnorom & Osibanjo 2022).

Agricultural practices, such as the use of phosphate fertilizers, are linked to elevated Cd levels, the elevated As levels in GN (6.86x10⁻³) for children and GMK (8.61x10⁻³) for adults could be due to Arsenic-containing pesticides (Abdulaziz et al., 2022; (Parvez, 2022; Sibuar et al., 2022). Shahriar et al. (2023) in their study showed the values of Pb in rice were 0.1×10^{-6} to 1.1×10^{-6} for adults and 0.1×10⁻⁶ to 1.2×10⁻⁶ for children; Cr were 0.3×10^{-6} to 2.1×10^{-6} for adults and 0.3×10^{-6} to 2.4×10^{-6} for children; and Cd were 0.33×10^{-4} to 2.19×10^{-4} for adults and 0.38×10⁻⁴ to 2.48×10⁻⁶ for children. Their results showed values for Pb and Cr were all within the threshold contrary to the current study. A study by Neisi et al., (2024), where they evaluated the carcinogenic risk caused by heavy metal exposure in children and adults, showed both groups' accumulated lifetime Cancer risk and ILCRs were lower than $(1x10^{-6})$.

Environmental contamination from industrial activities such as electroplating and tanning can be linked to the high Cr levels in SW (9.62x10-3 for children), which indicates a possibility of cancer in a lifetime of 1 in 1000. Additionally, mining activities may contribute to the level of (Pb) concentrations in GMK 7.65x10-4 and GS 6.80x10-4 indicating a very risk of 1 in 10,000 (Vardhan et al., 2019); (Gao, 2021). Contaminated irrigation water is equally a significant factor in the accumulation of heavy metals in crops, affecting all locations. (Soltan et al., 2020); (Rehman et al., 2021); (Agatha et al., 2023). Chronic exposure to Arsenic can lead to skin lesions, cardiovascular diseases, and increased risks of skin, lung, and bladder cancers (Sall et al., 2020; (Ihedioha, 2021; Vaezi, 2024).

The current study agrees with the scholarly reviews of Yin et al. (2023), where they showed values of Cd in some locations, namely; Tanjung Karang, Selangor (7.48 x 10⁻⁴), Kota Marudu, Sabah (4.15 x 10⁻⁴) and Ranau Valley, Sabah (1.25 x 10⁻³) ,they indicated that among every 10,000 adult individuals in Tanjung Karang (Selangor), Kota Marudu (Sabah), and Ranau Valley (Sabah), there is a probability of 4 to 13 individuals who may develop carcinogenic related health risks caused by Cd exposure, such as lung, pancreas, and breast cancers, over a period of 74 years (Rahimzadeh et al., 2017; Genchi et al., 2020; Tatah-Mentan et al., 2020).

Intake of Cd-contaminated rice may pose a risk of contracting the itai-itai disease. During the 1950s, ingesting rice contaminated with cadmium led to (itai-itai disease) which impacted humans' well-being (Nishijo, 2017). The disease complications of Itai-itai are associated with osteomalacia and severe bone pain and disorder, as well as renal tubular failure (Shi et al., 2020). Chromium exposure, particularly to hexavalent chromium, leads to respiratory problems, skin irritation, and lung cancer risks (Shrestha & Kazama, 2016; Zhaoyong et al., 2019; Bashir et al., 2024).

The current study agrees with the work of Yin et al. (2023), where they showed all adult's life cancer risk values of Pb exposure were below 1 x 10^{-4} (LCR <1 x 10^{-4}) except for the LCR value of Pb in Sabak Bernam, Selangor (1.16 x 10^{-4}). In the current study, the lead value in GMK for children is 7.65×10^{-4} while in adults from all locations they ranged at 10^{-3} . This indicates that among every 10,000 adult individuals in Sabak Bernam, Selangor, there is a probability of 1 individual who may develop carcinogenic-related health risks caused by Pb exposure, such as brain, stomach, and lung cancers over 74 years (Rai et al., 2019) while in Nigeria the probability is 54 years.

CONCLUSION

This study highlights significant public health risks posed by elevated levels of heavy metals in rice from Gashua, emphasizing the urgent need for immediate

regulatory action and public health interventions to reduce exposure and ensure food safety. Given the widespread reliance on rice as a dietary staple in Nigeria, these findings underscore the importance of public health initiatives such as consumer education and the promotion of alternative food sources in affected regions. Future research should investigate the sources of contamination, explore remediation strategies, and assess broader implications for food safety in other rice-producing areas. Furthermore, regulatory agencies such as the National Agency for Food and Drug Administration and Control (NAFDAC) and the National Environmental Standards and Regulations Enforcement Agency (NESREA) should strengthen their monitoring and enforcement mechanisms to ensure agricultural products remain safe for consumption.

To avert further exposure and protect public health, several measures are recommended. NAFDAC should intensify monitoring of heavy metals in unregistered rice sold in open markets to accurately assess contamination levels and guide government policy decisions. NESREA must enhance its regulation and control of untreated waste disposal into waterways and promote safer chemical use in agriculture. Regulatory bodies should also encourage the adoption of remediation methods, such as phytoremediation and the cultivation of metal-tolerant rice Additionally, varieties. government should increase public awareness about the health risks associated with contaminated rice and advocate dietary diversification. Finally, research institutions, healthcare agencies, and regulatory bodies like NAFDAC should establish and maintain a national database on agrochemical use and heavy metal contamination to enable timely responses and minimize the adverse health and environmental effects of agricultural pollution in Nigeria.

ACKNOWLEDGEMENT

I wish to thank my research supervisors Dr. Kabiru Mustapha Yakasai and Prof Abdullahi Sabo Muhammad at Maryam Abacha American University Maradi, Niger, for their immense contribution despite their tight schedules.

FUNDING

The author did not receive any specific grant for the research. All expenses incurred were solely paid by the author.

DECLARATION OF COMPETING INTEREST

There are no conflicts of interest related to this research.

SAMPLE COLLECTION

All samples were purchased based on mutual consent from the rice sellers at the market and from the farmers at the farm. Farmers just requested the need to incorporate them in any prospective intervention and they are open to contributing in future research.

REFERENCES

Abdulaziz, M., Alshehri, A., Yadav, I. C., & Alqahtani, T. M. (2022). Pollution level and health risk assessment of heavy metals in ambient air and surface dust from Saudi Arabia: A systematic review and meta-analysis. *Air Quality, Atmosphere & Health*, 15(5), 799–810.

https://doi.org/10.1007/s11869-022-01176-1

Abdullahi, S. M. (2017). Research methods and processes (1st ed.). Ahmadu Bello University Press Limited. ISBN 978-978-947-163-8.

Afzal, J., Saleem, M. H., Batool, F., Elyamine, A. M., Rana, M. S., Shaheen, A., El-Esawi, M. A., Tariq Javed, M., Ali, Q., & Arslan Ashraf, M. (2020). Role of ferrous sulfate (FeSO₄) in resistance to cadmium stress in two rice (*Oryza sativa* L.) genotypes. *Biomolecules*, 10(12), 1693. https://doi.org/10.3390/biom10121693

Agatha, A. S., Nur, S. Z., Jinap, S., Mohd, R. I., Soo, Y. L., & Ahmad, F. A. (2023). Quantitative analysis and human health risk assessment of heavy metals in paddy plants collected from Perak, Malaysia. *Environmental Science and Pollution Research*, 30(15), 43210–43222.

https://doi.org/10.1007/s11356-023-25967-4

Ahmad, S. R., & Qadir, O. K. (2023). Determination of some heavy metals in imported rice grains (*Oryza sativa*) available in Sulaymaniyah market and evaluation of their health risk assessment. *Zanco Journal of Pure and Applied Sciences*, 35(1), 88–95. https://doi.org/10.21271/ZJPAS.35.1.9

Al-Saleh, I., & Abduljabbar, M. J. (2017). Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (*Oryza sativa*) sold in Saudi Arabia and their potential health risk. *International Journal of Hygiene and Environmental Health*, 220(7), 1168–1178. https://doi.org/10.1016/j.ijheh.2017.06.001

Alaa, A. C., Ahmed, M. S., & Abeer, S. A. (2022). Determination of heavy metals in irrigation water, soil, paddy, and produced rice of some paddy fields of Iraq. *Iraqi Journal of Science*, 63(11), 4637–4649.

https://doi.org/10.24996/ijs.2022.63.11.2

Amir, R. M., Randhawa, M. A., Sajid, M. W., Nadeem, M., Ahmad, A., & Wattoo, F. M. (2019). Evaluation of various soaking agents as a novel tool for heavy metal residues mitigation from spinach. *Food Science and Technology (Campinas)*, 39(1), 176–180. https://doi.org/10.1590/fst.00118

Amoo, A. O., Adeleye, A. O., Bate, G. B., Asaju, C. I., Isiaq, S. M., & Ilyasu, Y. A. (2021). Water quality analyses: Evidence from River Gashua and some selected groundwater sources in Gashua, Nigeria. *Indonesian Journal of Social and Environmental Issues* (*IJSEI*), 2(3), 2722–1369. https://ojs.literacyinstitute.org/index.php/ijsei

Amshi, S. A., Iliya, I., & Adamu, A. (2019). Chronic kidney disease associated with heavy metals (Cr, Pb, Cd) analyzed from irrigation water of Gashua, Yobe, Nigeria. *IOSR Journal of Applied Chemistry*, 12(5), 43–48. https://www.iosrjournals.org

Arcella, D., Cascio, C., & Gómez Ruiz, J. Á. (European Food Safety Authority [EFSA]). (2021). Chronic dietary exposure to inorganic arsenic. EFSA Journal, 19(1), e06380. https://doi.org/10.2903/j.efsa.2021.6380

Association of Official Agricultural Chemists (AOAC). (2010). Standards for analysing heavy metals in food and agricultural products using various techniques. AOAC International.

Bakshi, M., & Abhilash, P. C. (2020). Nanotechnology for soil remediation: Revitalizing the tarnished resource. In *Nano-materials as photocatalysts for degradation of environmental pollutants* (pp. 345–370). Elsevier. https://doi.org/10.1016/B978-0-12-818598-8.00017-1

Bashir, M. S., Auwal, M. A., Sulaiman, B. A., Uzoamaka, V. E., Abdullahi, M. G., Oluyinka, O. A., & Auwal, A. (2024). Heavy metal contamination in medicinal plants: Assessing carcinogenic and non-carcinogenic health risks. *Discover Environment*. https://doi.org/10.1007/s44202-024-00061-9

Behrouzi, R., Marhamatizadeh, M. H., Shoeibi, S., Razavilar, V., & Rastegar, H. (2018). Effects of pre-cooking process with acetic acid and citric acid on the lead (Pb) concentration in rice. *Journal of Food and Nutrition Research*, 6(1), 56–61. https://doi.org/10.12691/jfnr-6-1-9

Cao, S., Duan, X., Zhao, X., Wang, B., Ma, J., Fan, D., Sun, C., He, B., Wei, F., & Jiang, G. (2015). Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China. *Environmental Pollution*, 200, 16–23.

https://doi.org/10.1016/j.envpol.2015.02.017

Census. (2006). Federal Republic of Nigeria official gazette (Vol. 96, Government Notice No. 2). Federal Government Printer, Abuja (FGP 16/22009/10,000 [OL 02]).

Chew, J. Y., Cheng, W. H., Wong, L. S., Ong, G. H., Subramaniam, G., & Barasarathi, J. (2023). Assessment of heavy metal content and consumption risks at selected paddy field in Malaysia: A review. *Journal of Experimental Biology and Agricultural Sciences*, 11(5), 791–799. https://doi.org/10.18006/2023.11(5).791.799

Chyad, A. A., Saeed, A. M., & Alhendi, A. S. (2022). Determination of heavy metals in irrigation water, soil, paddy, and produced rice of some paddy fields of Iraq. *Iraqi Journal of Science*, 63(11), 4637–4649. https://doi.org/10.24996/ijs.2022.63.11.2

- Deng, F., Yu, M., Martinoia, E., & Song, W.-Y. (2019). Ideal cereals with lower arsenic and cadmium by accurately enhancing vacuolar sequestration capacity. *Frontiers in Genetics*, 10, 322. https://doi.org/10.3389/fgene.2019.00322
- Eske, J. (2020). Copper toxicity: Symptoms and treatment. *Medical News Today*.
- https://www.medicalnewstoday.com/articles/copper-toxicity
- Fan, Y., Zhu, T., Li, M., He, J., & Huang, R. (2017). Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China. *Journal of Healthcare Engineering*, 2017, 4124302. https://doi.org/10.1155/2017/4124302
- Fayiga, A. O., & Saha, U. K. (2016). Arsenic hyperaccumulating fern: Implications for remediation of arsenic-contaminated soils. *Geoderma*, 284, 132–143. https://doi.org/10.1016/j.geoderma.2016.09.003
- Flatman, G. T., & Yfantis, A. A. (1984). Geostatistical strategy for soil sampling: The survey and the census. *Environmental Monitoring and Assessment*, 4, 335–349. https://doi.org/10.1007/BF00394172
- Gao, J., Zhang, D., Uwiringiyimana, E., et al. (2021). Evaluation of trace element contamination and health risks of medicinal herbs collected from unpolluted and polluted areas in Sichuan Province, China. *Biological Trace Element Research*, 199, 4342–4352.
- https://doi.org/10.1007/s12011-020-02539-4
- Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. *International Journal of Environmental Research and Public Health*, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
- Gerba, C. P., Brusseau, M. L., & Pepper, I. L. (2019). Risk assessment. In I. L. Pepper, C. P. Gerba, & M. L. Brusseau (Eds.), *Environmental and pollution science* (3rd ed.). Elsevier.
- Gunduz, S., & Akman, S. (2013). Investigation of arsenic and cadmium contents in rice samples in Turkey by electrothermal atomic absorption spectrometry. *Food Analytical Methods, 1–4*. https://doi.org/10.1007/s12161-013-9588-6
- Guo, Y., Huang, M., You, W., Cai, L., Hong, Y., Xiao, Q., Zheng, X., & Lin, R. (2022). Spatial analysis and risk assessment of heavy metal pollution in rice in Fujian Province, China. *Frontiers in Environmental Science*, 10, 1082340. https://doi.org/10.3389/fenvs.2022.1082340
- Hasan, G. M. M. A., Das, A. K., & Satter, M. A. (2022). Accumulation of heavy metals in rice (*Oryza sativa* L.) grains cultivated in three major industrial areas of Bangladesh. *Journal of Environmental and Public Health*, 2022, 1836597. https://doi.org/10.1155/2022/1836597

- Hashem, I. A., Abbas, A. Y., El-Hamed, A. E.-N. H. A., Salem, H. M., El-Hosseiny, O. E., Abdel-Salam, M. A., Saleem, M. H., Zhou, W., & Hu, R. (2020). Potential of rice straw biochar, sulfur, and ryegrass (*Lolium perenne* L.) in remediating soil contaminated with nickel through irrigation with untreated wastewater. *PeerJ*, 8, e9267. https://doi.org/10.7717/peerj.9267
- Huo, Y., Du, H., Xue, B., Niu, M., & Zhao, S. (2016). Cadmium removal from rice by separating and washing protein isolate. *Journal of Food Science*, 81(6), 1–9. https://doi.org/10.1111/1750-3841.13323
- Ihedioha, J. N., & Okoye, C. O. B. (2021). Environmental pollution and associated human health risk assessment of trace metals in soil and food crops around lead-contaminated areas in Nigeria. *Environmental Science and Pollution Research*, 28(18), 23100–23114. https://doi.org/10.1007/s11356-021-15569-9
- Jarjees, F. Z., & Darwesh, D. A. (2023). Heavy metals concentration in commercial rice available at Erbil City markets, Iraq and soaking effects. *Baghdad Science Journal*, 20(3 Suppl.), 967–978. https://doi.org/10.21123/bsj.2023.8176
- Jarjees, F. Z., & Darwesh, D. A. (2024). Human health risk assessment of toxic heavy metals in commercially available rice at local markets in Erbil, within the Kurdistan Region of Iraq. Zanco Journal of Pure and Applied Sciences, 36(3), 95–108. https://doi.org/10.21271/ZJPAS.36.3.9
- Jarjees, J. O., Omokpariola, D. O., & Omokpariola, E. C. (2022). Risk assessment of polycyclic aromatic hydrocarbons and total petroleum hydrocarbons in oilfield produced water and sea water at Gulf of Guinea oilfield, Nigeria. *Advanced Journal of Chemistry Section B*, 3(1), 68–85. https://doi.org/10.22034/ajcb.2021.121909
- Javed, M. T., Saleem, M. H., Aslam, S., Rehman, M., Iqbal, N., Begum, R., Ali, S., Alsahli, A. A., Alyemeni, M. N., & Wijaya, L. (2020). Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (*Trachyspermum ammi* L.). *Plant Physiology and Biochemistry*, 157, 23–37. https://doi.org/10.1016/j.plaphy.2020.05.036
- Kamani, H., Mirzaei, N., Ghaderpoori, M., Bazrafshan, E., Rezaei, S., & Mahvi, A. H. (2018). Concentration and ecological risk of heavy metal in street dusts of Eslamshahr, Iran. *Human and Ecological Risk Assessment: An International Journal*, 24(4), 961–970.
- https://doi.org/10.1080/10807039.2017.1403282
- Kelle, H. I., Ogoko, E. C., Achem, D., & Ayotunde, O. S. (2020). Health risk assessment of heavy metals in some rice brands imported into Nigeria. *Communications in Physical Sciences*, 5(2), 210–222.
- Kelle, H. I., Ogoko, E. C., Udeozo, P. I., Achem, D., & Otumala, J. O. (2021). Health risk assessment of exposure to heavy metals in rice grown in Nigeria. *The Pacific Journal of Science and Technology*, 22(1), 262–270.

- Khalef, R. N., Hassan, A. I., & Saleh, H. M. (2022). Heavy metal's environmental impact. In H. M. Saleh & A. I. Hassan (Eds.), *Environmental impact and remediation of heavy metals*. IntechOpen. https://doi.org/10.5772/intechopen.103907
- Khan, Z. I., Ugulu, I., Sahira, S., Mehmood, N., Ahmad, K., Bashir, H., & Dogan, Y. (2020). Human health risk assessment through the comparative analysis of diverse irrigation regimes for Luffa cylindrica (L.) Roem. Journal of Water, Sanitation and Hygiene for Development, 10(2), 249–261. https://doi.org/10.2166/washdev.2020.107
- Khan, Z. I., Ugulu, I., Umar, S., Ahmad, K., Mehmood, N., Ashfaq, A., Bashir, H., & Sohail, M. (2018). Potential toxic metal accumulation in soil, forage, and blood plasma of buffaloes sampled from Jhang, Pakistan. *Bulletin of Environmental Contamination and Toxicology*.

https://doi.org/10.1007/s00128-018-2353-9

- Khan, Z. I., Ugulu, I., Zafar, A., Mehmood, N., Bashir, H., Ahmad, K., & Sana, M. (2021). Biomonitoring of heavy metals accumulation in wild plants growing at Soon Valley, Khushab, Pakistan. *Pakistan Journal of Botany*, *53*, 247–252.
- Khanam, R., Kumar, A., Nayak, A. K., Shahid, M., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., & Panneerselvam, P. (2020). Metal(loid)s (As, Hg, Se, Pb, and Cd) in paddy soil: Bioavailability and potential risk to human health. *Science of the Total Environment*, 699, 134330. https://doi.org/10.1016/j.scitotenv.2019.134330
- Kimmage, K. (2012). Wetland agricultural production and river basin development in the Hadejia Jamaare Valleys, Nigeria. *The Geographical Journal*, 159(3), 1–10.
- Kohzadi, S., Shahmoradi, B., & Ghaderi, E. (2019). Concentration, source, and potential human health risk of heavy metals in commonly consumed medicinal plants. *Biological Trace Element Research*, 187(1), 41–50. https://doi.org/10.1007/s12011-018-1357-3
- Kubang Kerian Kelantan Malaysia: Unit of Biostatistics & Research Methodology, School of Medical Sciences, Universiti Sains Malaysia. (2015). *Random Sampling Generator Using Microsoft Excel* (Version 4.0) [Computer software].
- Muhammad, A. S. (2017). *Research methods and processes* (1st ed., pp. 77–78). Ahmadu Bello University Press Limited. ISBN 978-978-947-163-8
- Neisi, A., Farhadi, M., Angali, K. A., & Sepahvand, A. (2024). Health risk assessment for consuming rice, bread, and vegetables in Hoveyzeh city. *Toxicology Reports*, 12, 260 265. https://doi.org/10.1016/j.toxrep.2024.02.003
- Nishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., & Kido, T. (2017). Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: A nested case—control analysis of a follow-up study in Japan. *BMJ Open*, 7(7), e015694.

https://doi.org/10.1136/bmjopen-2016-015694

- Nnorom, I. C., & Osibanjo, O. (2022). Ambient air quality and associated human health risk in selected urban centers of Nigeria. *Air Quality, Atmosphere & Health, 15(3), 455–466*. https://doi.org/10.1007/s11869-022-01176-1
- Oberoi, S., Devleesschauwer, B., Gibb, H. J., & Barchowsky, A. (2019). Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015. *Environmental Research*, 171, 185–192.

https://doi.org/10.1016/j.envres.2019.01.025

- Okechukwu, V. U., Omokpariola, D. O., Onwukeme, V. I., Nweke, E. N., & Omokpariola, P. L. (2021). Pollution investigation and risk assessment of polycyclic aromatic hydrocarbons in soil and water from selected dumpsite locations in Rivers and Bayelsa State, Nigeria. *Environmental Analysis Health and Toxicology*, 36(4), e2021023. https://doi.org/10.5620/eaht.2021023
- Omokpariola, J. O., Omokpariola, D. O., & Omokpariola, E. C. (2022). Risk assessment of polycyclic aromatic hydrocarbons and total petroleum hydrocarbons in oilfield produced water and sea water at Gulf of Guinea oilfield, Nigeria. *Advances in Journal of Chemistry Section B, 3(1), 68–85*. https://doi.org/10.22034/ajcb.2021.121909
- Opara, I. J., & Ntol, S. N. (2023). Comparative studies of four locally produced rice in Wukari and an imported brand based on their proximate, vitamin, mineral composition, and heavy metal contamination. *British Journal of Multidisciplinary and Advanced Studies: Sciences*, 4(1), 21–32. https://doi.org/10.37745/bjmas.2022.0097
- Ozbek, N., Tinas, H., & Atespare, A. E. (2019). A procedure for the determination of trace metals in rice varieties using microwave induced plasma atomic emission spectrometry. *Microchemical Journal*, 144, 474–478. https://doi.org/10.1016/j.microc.2018.09.019
- Parvez, M. (2022). Heavy metals levels and associated health risk assessment of *Euphorbia granulata Forssk. Environmental Science and Pollution Research*, 29, 1998–2008. https://doi.org/10.1007/s11356-021-15569-9
- Proshad, R., Kormoker, T., Islam, M. S., & Chandra, K. (2019). Potential health risk of heavy metals via consumption of rice and vegetables grown in the industrial areas of Bangladesh. *Human and Ecological Risk Assessment: An International Journal*, 25(7), 1–23.

https://doi.org/10.1080/10807039.2018.1546114

- Qian, Y., Chen, C., Zhang, Q., Li, Y., & Chen, Z. (2010). Concentrations of cadmium, lead, mercury, and arsenic in Chinese market milled rice and associated population health risk. *Food Control*, *21(12)*, *1757–1763*. https://doi.org/10.1016/j.foodcont.2009.08.005
- Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. (2017). Cadmium toxicity and treatment: An update. *Caspian Journal of Internal Medicine*, 8(3), 135–145. https://doi.org/10.22088/cjim.8.3.135

- Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. *Environment International*, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067
- Rehman, A. U., Nazir, S., Irshad, R., Tahir, K., Rehman, K. U., Islam, R. U. I., & Wahab, Z. (2021). Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. *Journal of Molecular Liquids*, 321, 114455. https://doi.org/10.1016/j.molliq.2020.114455
- Rehman, M., Liu, L., Wang, Q., Saleem, M. H., Bashir, S., Ullah, S., & Peng, D. (2019). Copper environmental toxicology, recent advances, and future outlook: A review. *Environmental Science and Pollution Research*, 26, 18003–18016. https://doi.org/10.1007/s11356-019-05171-4
- Saleem, M. H., Ali, S., Rehman, M., Rana, M. S., Rizwan, M., Kamran, M., Imran, M., Riaz, M., Soliman, M. H., & Elkelish, A. (2020). Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (*Corchorus capsularis* L.) varieties grown in a copper mining soil of Hubei Province, China. *Chemosphere*, 248, 126032. https://doi.org/10.1016/j.chemosphere.2020.126032
- Saleem, M. H., Fahad, S., Khan, S. U., Din, M., Ullah, A., El Sabagh, A., Hossain, A., Llanes, A., & Liu, L. (2019). Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (*Linum usitatissimum* L.) seedlings grown under the mixing of two different soils of China. *Environmental Science and Pollution Research*, 27, 5211–5221. https://doi.org/10.1007/s11356-019-07118-3
- Saleh, A., & Ahmed, A. (2019). Solid waste management practice and challenges in Gashua, Yobe State, Nigeria. Nigerian Journal of Environmental Science and Technology (NIJEST), 3(2), 298–303. https://doi.org/10.36263/nijest.2019.02.0139
- Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., et al. (2020). Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers—A review. *Environmental Science and Pollution Research*, 27, 29927–29942. https://doi.org/10.1007/s11356-020-09354-3
- Shahriar, S. M. S., Munshi, M., Hossain, M. S., Zakir, H. M., & Salam, S. M. A. (2023). Risk assessment of selected heavy metals contamination in rice grains in the Rajshahi city of Bangladesh. Journal of Engineering Science, 14(1), 29–41. https://doi.org/10.3329/jes.v14i1.67633
- Shahriar, S., Paul, A. K., & Rahman, M. M. (2022). Removal of toxic and essential nutrient elements from commercial rice brands using different washing and cooking practices: Human health risk assessment. *International Journal of Environmental Research and Public Health*, 19(5), 2582. https://doi.org/10.3390/ijerph19052582
- Shakerian, A., Rahimi, E., & Ahmadi, M. (2012). Cadmium and lead content in several brands of rice grains (*Oryza sativa*) in central Iran. *Toxicology and Industrial Health*, 28(10), 955–960. https://doi.org/10.1177/0748233711430979

- Sharafati Chaleshtori, F., Rafieian Kopaei, M., & Sharafati Chaleshtori, R. (2016). A review of heavy metals in rice (*Oryza sativa*) of Iran. *Toxin Reviews*, 35(3–4), 1–8. https://doi.org/10.1080/15569543.2016.1252932
- Shi, Z., Carey, M., Meharg, C., Williams, P. N., & Signes-Pastor, A. J. (2020). Rice grain cadmium concentrations in the global supply-chain. *Exposure and Health*, 12, 869–876. https://doi.org/10.1007/s12403-020-00349-6
- Shrestha, S., & Kazama, F. (2016). Human and ecological risk assessment of heavy metals in urban soils and road dust in Kathmandu, Nepal. *Human and Ecological Risk Assessment: An International Journal*, 22(4), 936–952. https://doi.org/10.1080/10807039.2015.1133241
- Sibuar, A. A., Zulkafflee, N. S., Selamat, J., Ismail, M. R., Lee, S. Y., & Abdull Razis, A. F. (2022). Quantitative analysis and human health risk assessment of heavy metals in paddy plants collected from Perak, Malaysia. *International Journal of Environmental Research and Public Health*, 19(2), 731. https://doi.org/10.3390/ijerph19020731
- Soltan, M.-E., Al-Ayed, A., & Ismail, M. (2020). Evaluation of the concentrations of some metallic elements in the fallen dust extractants on the Ar Rass city, Qassim region, KSA. *International Journal of Environment and Analytical Chemistry*. https://doi.org/10.1080/03067319.2020.1811264
- Sun, J., Wang, J., & Feng, Y. (2023). Heavy metals in indoor dust in China: Occurrence, source, and health risk. *Current Pollution Reports*, 9, 798–807. https://doi.org/10.1007/s40726-023-00274-7
- Tariq, F., Wang, X., Saleem, M. H., Khan, Z. I., Ahmad, K., Malik, I. S., Munir, M., Mahpara, S., Mehmood, N., & Ahmad, T. (2021). Risk assessment of heavy metals in Basmati rice: Implications for public health. *Sustainability*, 13(15), 8513. https://doi.org/10.3390/su13158513
- Tatah-Mentan, M., Nyachoti, S., Scott, L., Phan, N., Okwori, F. O., Felemban, N., & Godebo, T. R. (2020). Toxic and essential elements in rice and other grains from the United States and other countries. *International Journal of Environmental Research and Public Health*, 17(21), 8128. https://doi.org/10.3390/ijerph17218128
- U.S. Environmental Protection Agency (USEPA). (2005). Human health risk assessment protocol: Quantifying exposure. Office of Solid Waste, Center for Combustion Science and Engineering. Washington, DC: USEPA.
- U.S. Environmental Protection Agency (USEPA). (2014). *Overview of human health risk assessment*. Office of Research and Development, National Center for Environmental Assessment. Washington, DC: USEPA.
- U.S. Environmental Protection Agency (USEPA). (2020). Overview of human health risk assessment. Office of Research and Development, National Center for Environmental Assessment. Washington, DC: USEPA.

U.S. Environmental Protection Agency (USEPA). (2021). Overview of human health risk assessment. Office of Research and Development, National Center for Environmental Assessment. Washington, DC: USEPA. https://www.epa.gov/risk

Ugochukwu, G. C., Eneh, F. U., Igwilo, I. O., & Aloh, C. H. (2017). Comparative study on the heavy metal content of domestic rice (*Oryza sativa* L.) brands common in Awka, Nigeria. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, 11(8), 67–70. https://www.iosrjournals.org

Ugulu, I., Akhter, P., Khan, Z. I., & Ahmad, K. (2021). Trace metal accumulation in pepper (*Capsicum annuum* L.) grown using organic fertilizers and health risk assessment from consumption. *Food Research International*, 140, 109992. https://doi.org/10.1016/j.foodres.2020.109992

Ugulu, I., Khan, Z. I., Sheik, Z., Ahmad, K., & Bashir, H. (2021). Effect of wastewater irrigation as an alternative irrigation resource on heavy metal accumulation in ginger (Zingiber officinale Rosc.) and human health risk from consumption. Arabian Journal of Geosciences, 14, 702. https://doi.org/10.1007/s12517-021-06768-3

Ugulu, I., Unver, M. C., & Dogan, Y. (2019). Potentially toxic metal accumulation and human health risk from consuming wild *Urtica urens* sold on the open markets of Izmir. *Euro-Mediterranean Journal for Environmental Integration*, 4, 36. https://doi.org/10.1007/s41207-019-0114-5

Vaezi, A., Shahbazi, R., Sheikh, M., et al. (2024). Environmental pollution and human health risks associated with atmospheric dust in Zabol City, Iran. *Air Quality, Atmosphere & Health*.

https://doi.org/10.1007/s11869-024-01582-7

Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. *Journal of Molecular Liquids*, 290, 111197.

https://doi.org/10.1016/j.molliq.2019.111197

Wahyuningsih, N. E., Setiawan, H., Nabiha, P. I., Kartasurya, M. I., & Azam, M. (2023). Heavy metals contamination of local and imported rice in Semarang, Central Java, Indonesia. *Journal of Ecological Engineering*, 24(7), 49–60. https://doi.org/10.12911/22998993/163308

Wang, X., et al. (2016). Heavy metal contaminations in soil—rice system: Source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. *Environmental Monitoring and Assessment, 188(8), 460.* https://doi.org/10.1007/s10661-016-5462-2

Waribo, H. A., Ohakwe, N. B., Anyalebechi, E. O., George, D. M., & Bartimaeus, E.-A. S. (2023). Heavy metals contamination of rice and soil samples in Nnatu St. Azuuiyi Udene, Abakiliki, Ebonyi State, Nigeria. *Journal of Advances in Medical and Pharmaceutical Sciences*, 25(1), 1–9. https://doi.org/10.9734/JAMPS/2023/v25i1593

Watson, C., & Gustave, W. (2022). Prevalence of arsenic contamination in rice and the potential health risks to the Bahamian population—A preliminary study. Frontiers in Environmental Science, 10, 1011785.

https://doi.org/10.3389/fenvs.2022.1011785

World Health Organization (WHO). (1993). Evaluation of certain food additives and contaminants (41st report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series 837. Geneva, Switzerland: WHO.

Zaheer, I. E., Ali, S., Saleem, M. H., Imran, M., Alnusairi, G. S. H., Alharbi, B. M., Riaz, M., Abbas, Z., Rizwan, M., & Soliman, M. H. (2020). Role of iron—lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (*Brassica napus* L.) plants irrigated with different levels of tannery wastewater. *Plant Physiology and Biochemistry*, 155, 70—84. https://doi.org/10.1016/j.plaphy.2020.07.023

Zhao, K. L., et al. (2010). Heavy metal contaminations in a soil—rice system: Identification of spatial dependence in relation to soil properties of paddy fields. *Journal of Hazardous Materials*, 181(1–3), 778–787.

https://doi.org/10.1016/j.jhazmat.2010.05.081

Zhaoyong, Z., Mamat, A., & Simayi, Z. (2019). Pollution assessment and health risks evaluation of metalloid heavy metals in urban street dust of 58 cities in China. *Environmental Science and Pollution Research*, 26, 126–140. https://doi.org/10.1007/s11356-018-3555-0

Zulkafflee, N. S., Redzuan, N. A. M., Hanafi, Z., Selamat, J., Ismail, M. R., Praveena, S. M., & Razis, A. F. A. (2019). Heavy metal in paddy soil and its bioavailability in rice using in vitro digestion model for health risk assessment. *International Journal of Environmental Research and Public Health*, 16, 4769. https://doi.org/10.3390/ijerph16234769